

Manifesto degli studi del Corso di Laurea Magistrale in Data Science and Scientific Computing Classe Modellistica Matematico-Fisica per l'Ingegneria LM-44 - cod. SM35 Coorte a.a. 2017/2018

Per maggiori informazioni si visiti il sito del corso di studi:

http://dssc.units.it

Obiettivi

La laurea magistrale in Data Science and Scientific Computing vuole preparare professionisti pronti ad affrontare le sfide della moderna società digitale: esperti nell'analisi e gestione di dati, in particolare di big data, e nella modellazione computazionale con applicazioni in scienza ed ingegneria.

Gli obiettivi formativi della LM in DSSC sono:

- saper gestire problemi complessi in ambito multidisciplinare, costruendo modelli matematici e/o statistici e analizzandoli con opportune tecniche computazionali;
- saper valutare quali tecniche computazionali e strumenti tecnologici sono necessari per risolvere tali problemi nel modo più efficiente possibile;
- Saper comunicare ed interagire con esperti di altre discipline, con appropriatezza di linguaggio e capendo i problemi principali in queste aree;

Alla fine, gli studenti non solo acquisiranno competenze teoriche, ma anche impareranno come applicare la teoria per la risoluzione di problemi pratici, mediante esercizi individuali, lavori di gruppo, seminari e il tirocinio.

Gli studenti svilupperanno anche buone capacità di comunicazione, per interagire con altri professionisti, per comunicare risultati, per aggiornare le loro abilità professionali e suggerire soluzioni innovative.

Borse di Studio

Per informazioni su eventuali borse di studio a supporto della partecipazione alla laurea magistrale, si rimanda all'apposita pagina del sito del corso: https://dssc.units.it/scholarships.

Calendario delle lezioni e delle sessioni d'esame

L'anno accademico 2017/2018 è organizzato in due periodi didattici e tre periodi per le sessioni d'esame.

Periodo Didattico	Inizio Lezioni	Fine Lezioni
I periodo	02 Ottobre 2017	19 Gennaio 2018
II periodo	05 Marzo 2018	15 Giugno 2018

Per maggiori dettagli si veda all'indirizzo http://dssc.units.it

Ammissione al Corso di Laurea Magistrale

Il corso di laurea magistrale in Data Science and Scientific Computing prevede il numero programmato in accesso. Per l'anno accademico 2017/2018 sono previsti 30 posti.

La selezione dei candidati sarà effettuata da un'apposita commissione di ammissione, secondo le modalità indicate dal bando di selezione reperibile presso il sito web dell'ateneo.

La procedura di selezione si svolge in due fasi. La prima fase prevede la verifica dei requisiti curriculari di accesso, secondo quanto previsto dal regolamento didattico e in seguito dettagliato. I candidati ammessi alla seconda fase verranno intervistati. Alla fine delle interviste, sarà stilata una graduatoria di accesso.

Sono ammessi alla procedura di selezione al corso di Laurea magistrale in Data Science and Scientific Computing i candidati in possesso di tutti i seguenti requisiti:

- A. un titolo di laurea (o di laurea ante riforma) o Diploma Universitario di durata triennale, ovvero di altro titolo di studio equivalente conseguito all'estero.
- B. un voto di laurea almeno pari a 95/110
- C. almeno 60 cfu in uno o più dei seguenti ambiti disciplinari sotto specificati: matematica (MAT/*), informatica (INF/01), ingegneria dell'informazione (ING-INF/*), ingegneria industriale (ING-IND/*), ingegneria civile (ICAR/01-09), fisica (FIS/*), statistica e metodi matematici per le decisioni (SECS-S/*), chimica (CHIM/*), geofisica e fisica terreste (GEO/10,GEO/12), di cui almeno 12 in ambito matematico (MAT/*, SECS-S/06) e 6 in ambito informatico (INF/01, ING-INF/05).
- D. un'adeguata conoscenza della lingua inglese, certificata mediante il possesso di certificazione internazionalmente riconosciuta (livello B2 o equivalente, si veda allegato D).

La procedura di selezione, in capo alla commissione per l'accesso, consta di una valutazione del curriculum e di un'intervista ai candidati, in persona o per via telematica, qualora richiesto. L'intervista mira a verificare nel dettaglio l'effettiva competenza, preparazione e motivazione del candidato, ed è generalmente tenuta in lingua inglese. Durante l'intervista, sarà in ogni caso verificata l'effettiva conoscenza della lingua inglese. Nel caso lo studente non sia in possesso della certificazione internazionale, il superamento di tale verifica è condizione necessaria per l'ammissione. In ogni caso, per poter finalizzare l'iscrizione, lo studente dovrà presentare la certificazione linguistica entro tempistiche stabilite dal bando di ammissione. Ove ritenuto necessario, la commissione potrà richiedere l'effettuazione di una o più prove scritte e/o pratiche.

Si rimanda al bando per la selezione al corso di laurea per avere ulteriori informazioni sui criteri di selezione, sulle tempistiche, e sulle modalità di valutazione.

Attività formative

Il Corso di Laurea Magistrale ha durata biennale e prevede attività formative relative a cinque tipologie (Art. 10 comma 1 e Art. 10 comma 5 del DM 270):

- attività formative in uno o più ambiti disciplinari caratterizzanti la classe.
- attività formative in uno o più ambiti disciplinari affini o integrativi a quelli di base e caratterizzanti, anche con riguardo alle culture di contesto e alla formazione interdisciplinare;
- attività formative autonomamente scelte dallo studente purché coerenti con il progetto formativo;

- attività formative relative alla preparazione della prova finale per il conseguimento del
- titolo di studio;
- attività formative, non previste dai punti precedenti, volte ad acquisire ulteriori conoscenze linguistiche, nonché abilità informatiche e telematiche, relazionali, o comunque utili per l'inserimento nel mondo del lavoro, nonché attività formative volte ad agevolare le scelte professionali, mediante la conoscenza diretta del settore lavorativo cui il titolo di studio può dare accesso, tra cui, in particolare, i tirocini formativi e di orientamento di cui al decreto 25 marzo 1998, n. 142, del Ministero del lavoro.

La seguente tabella riporta l'elenco degli insegnamenti erogati dal Corso di Studi Magistrale in Data Science and Scientific Computing nell'a.a. 2017/18 e finalizzate all'acquisizione dei CFU nei rispettivi anni di corso. Si veda anche l'Allegato C per gli obiettivi formativi degli insegnamenti indicati nella tabella.

Corso	SSD	TAF	CFU	ANNO	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	I	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	I	I
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	ВС	6	1	-
Numerical Analysis	MAT/08	В	6	Ι	I
Data Management for Big Data	INF/01	В	9	I	II
Statistical Methods for Data Science	SECS-S/01	С	6	I	II
Statistical Machine Learning	INF/01	В	6	I	II
Stochastic Modelling and Simulation	INF/01	В	6	I	II
Advanced Numerical Analysis	MAT/08	В	6	I	II
Optimisation Models	MAT/09	В	9	I	II

Piani di studio

Il Corso di Laurea Magistrale in DSSC si articola in due curricula: il curriculum in Data Science e il curriculum in Computational Science and Engineering.

Il curriculum in Data Science forma laureati esperti nella nella gestione ed analisi di dati, con particolare attenzione ai Big Data. Verranno conseguite abilità statistiche, modellistiche e di data analytics, abilità computazionali di calcolo intensivo e di gestione di database per big data.

Il curriculum in Computational Science and Engineering forma laureati esperti in Computational Science and Engineering. Verranno conseguite abilità di modellistica matematica, conoscenze di metodi numerici di simulazione, nozioni di data analytics, abilità computazionali di calcolo intensivo e di programmazione scientifica.

Una descrizione della struttura dei curricula, con tabelle dei crediti per ogni tipologia ed una lista degli corsi attivati è disponibile nell'allegato A.

Entrambi i curricula hanno una serie di percorsi, o piani di studio di semi-automatica approvazione, costruiti per guidare lo studente nella scelta dei corsi del secondo anno. Ognuno di questi piani di studio ha un focus su una tematica metodologica o applicativa specifica. L'elenco ed il dettaglio di tali piani di studio è disponibile nell'allegato B. Lo studente che intenda costruire un piano di studi al di fuori di quelli proposti, deve comunque rispettare i vincoli dell'allegato A.

Prova finale e conseguimento della Laurea Magistrale

La prova finale per il conseguimento del titolo di dottore magistrale in Data Science and Scientific Computing corrisponde a 24 CFU di lavoro, e consiste nella preparazione di un elaborato, che proponga una soluzione originale ad un problema di natura scientifica o aziendale. L'elaborato deve inquadrare il problema affrontato all'interno del campo specifico ed essere corredato di una adeguata bibliografia.

Per essere ammesso alla prova finale lo studente deve aver concluso gli esami di profitto ed acquisito tutti i crediti previsti, ad eccezione di quelli relativi alla prova finale, entro il quindicesimo giorno antecedente la data di laurea. Deve inoltre avere effettuato il caricamento della dissertazione scritta nel sistema informatico Esse3 entro l'ottavo giorno antecedente la stessa data di laurea.

La tesi viene svolta sotto la guida di un relatore, di norma un docente del corso di studi in Data Science and Scientific Computing, il cui nominativo deve essere comunicato tempestivamente al Consiglio di Corso di Studi. Il relatore può essere un docente dei due atenei non afferente al CCS, previa autorizzazione del CCS. Possono esservi uno o più correlatori, anche non appartenenti al CCS. La tesi potrà essere svolta presso un laboratorio di ricerca o un'azienda convenzionata, previa autorizzazione del CCS.

La tesi sarà scritta e discussa in lingua inglese. Eccezioni adeguatamente motivate devono essere autorizzate dal CCS.

Lo studente dovrà fare due seminari di presentazione del lavoro di tesi: un progress report in itinere, ed un seminario tecnico di presentazione dei risultati prima dell'esame finale (prelaurea). Per ognuno di questi seminari sarà nominata dal Coordinatore del CCS una commissione di tre docenti, incluso il relatore. La commissione darà un feedback allo studente dopo il progress report. La commissione di prelaurea, invece, darà un giudizio sul lavoro dello studente, proponendo un incremento di punteggio secondo le modalità di attribuzione del voto finale.

L'esame finale consiste in una breve discussione dell'elaborato. La discussione deve essere comprensibile ad un pubblico educato ma non specialista negli argomenti della dissertazione.

Il voto finale di Laurea Magistrale si basa sulla valutazione del curriculum degli studi, dei contenuti della Tesi, della sua presentazione e su ulteriori attività formative svolte dallo studente. Il voto complessivo si ottiene a partire dalla media pesata (dai relativi CFU) dei voti d'esame del biennio di Laurea Magistrale espresso in centodecimi. A questa di norma si aggiungono ulteriori punti per la Tesi, la sua presentazione e discussione, decisi a maggioranza dalla commissione di Laurea. Il massimo di punti che possono essere assegnati è pari a 10. L'attribuzione della lode, nel caso il candidato abbia raggiunto il massimo dei voti, richiede l'unanimità della Commissione Giudicatrice.

Il calendario delle sessioni di laurea è pubblicato nel sito http://dssc.units.it

ALLEGATO A: PIANO DEGLI STUDI

Il Corso di laurea in Data Science and Scientific Computing prevede 2 curricula:

- Curriculum "Data Science"
- Curriculum "Computational Science and Engineering"

Curriculum "Data Science"

Il curriculum in Data Science forma laureati esperti nella nella gestione ed analisi di dati, con particolare attenzione ai Big Data. Verranno conseguite abilità statistiche, modellistiche e di data analytics, abilità computazionali di calcolo intensivo e di gestione di database per big data.

Curriculum "Data Science"					
I anno (60 CFU)					
Insegnamento	Settore	TAF	CFU		
Advanced Programming and Algorithmic Design	ING-INF/05	В	12		
Foundations of High Performance Computing	ING-INF/05	В	9		
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6		
Numerical Analysis	MAT/08	В	6		
Data Management for Big Data	INF/01	В	9		
Statistical Methods for Data Science	SECS-S/01	С	6		
Statistical Machine Learning	INF/01	В	6		
II anno (60 CFU)					
Insegnamento	Settore	TAF	CFU		
Insegnamenti opzionali		С	12		
Insegnamenti a scelta		D	12		
Tirocinio		F	12		
Tesi		Е	24		

Nel piano degli studi possono essere inseriti alcuni insegnamenti opzionali (TAF A, B, C) selezionabili tra:

Insegnamenti Opzionali					
Insegnamento	Settore	TAF	CFU		
Stochastic Modelling and Simulation	INF/01	С	6		
Optimisation Models	MAT/09	С	9		
Network Science	INF/01	С	6		
Information Retrieval	ING-INF/05	С	6		
Social Network Analysis	SECS-S/05	С	6		
Big Data Bioinformatics	INF/01	С	6		
Genomic Data Analytics	MED/03	С	6		
Cyber-Physical Systems	INF/01	С	6		
Health Data Analytics	MED/01	С	6		
Software Development Methods	ING-INF/05	С	6		
Optimisation and Design	ING-IND/08	С	9		

Nel piano degli studi possono essere inseriti alcuni insegnamenti a scelta (TAF D) selezionabili tra quelli presenti nella seguente lista. Si prega di verificare la loro effettiva erogazione nell'anno di interesse.

Insegnamenti A Scelta					
Insegnamento	Settore	TAF	CFU		
Tutti gli insegnamenti delle tabelle precedenti		D			
Open Data Management and the Cloud	ING-INF/05	D	6		
Computer Vision and Pattern Recognition	ING-INF/05	D	6		
Bayesian Statistics	SECS-S/01	D	6		
Algorithms for Massive Data	INF/01	D	6		
Management of Health Data	ING-INF/06	D	6		
Biomedical Signals and Bioimage Analysis	ING-INF/06	D	6		

Applied Genomics	BIO/18	D	6
Advanced Mathematical Methods	MAT/05	D	6
Advanced Numerical Analysis	MAT/08	D	6
Systems and Control Theory	ING-INF/04	D	9
Optimal and Robust Control	ING-INF/04	D	9
Molecular Simulation	ING-IND/24	D	9
Altri insegnamenti (****) (****) Gli altri insegnamenti possono appartenere a qualsiasi settore		D	

Il curriculum in Computational Science and Engineering forma laureati esperti in Computational Science and Engineering. Verranno conseguite abilità di modellistica matematica, conoscenze di metodi numerici di simulazione, nozioni di data analytics, abilità computazionali di calcolo intensivo e di programmazione scientifica.

Curriculum "Computational Science and Engineering"				
I anno (60 CFU)				
Insegnamento	Settore	TAF	CFU	
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	
Foundations of High Performance Computing	ING-INF/05	В	9	
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	
Numerical Analysis	MAT/08	В	6	
Stochastic Modelling and Simulation	INF/01	В	6	
Advanced Numerical Analysis	MAT/08	В	6	
Optimisation Models	MAT/09	В	9	
II anno (60 CFU)				
Insegnamento	Settore	TAF	CFU	
Insegnamenti opzionali		С	12	
Insegnamenti a scelta		D	12	
Tirocinio		F	12	

Tesi		E	24	

Nel piano degli studi possono essere inseriti alcuni insegnamenti opzionali (TAF A, B, C) selezionabili tra:

Insegnamenti Opzionali					
Insegnamento	Settore	TAF	CFU		
Optimisation and Design	ING-IND/08	С	9		
Systems and Control Theory	ING-INF/04	С	9		
Optimal and Robust Control	ING-INF/04	С	9		
Fluid Dynamics	ICAR/01	С	6		
Computational Methods for Turbulent Fluids	ICAR/01	С	6		
Advanced Mathematical Methods	MAT/05	С	6		
Computational Physics Laboratory	FIS/01	С	6		
Computational Quantum Chemistry	CHIM/02	С	6		
Molecular Simulation	ING-IND/24	С	9		
Astrophysics	FIS/05	С	6		
Formation of Cosmological Large-Scale Structures	FIS/05	С	9		
Statistical Machine Learning	INF/01	С	6		
Cyber-Physical Systems	INF/01	С	6		
Software Development Methods	ING-INF/05	С	6		

Nel piano degli studi possono essere inseriti alcuni insegnamenti a scelta (TAF D) selezionabili tra quelli presenti nella seguente lista. Si prega di verificare la loro effettiva erogazione nell'anno di interesse.

Insegnamenti A Scelta						
Insegnamento	Settore	TAF	CFU			
Tutti gli insegnamenti delle tabelle precedenti		D				
Data Management for Big Data	INF/01	D	9			
Network Science	INF/01	D	6			
Statistical Methods for Data Science	SECS-S/01	D	6			

Big Data Bioinformatics	INF/01	D	6
Open data management and the cloud	ING-INF/05	D	6
Information Retrieval	ING-INF/05	D	6
Bayesian Statistics	SECS-S/01	D	6
Social Network Analysis	SECS-S/05	D	6
Algorithms for Massive Data	INF/01	D	6
Computer Vision and Pattern Recognition	ING-INF/05	D	6
Computational Fluid Mechanics	ING-IND/10	D	6
Biofluidodynamics	ING-IND/34	D	9
Environmental Hydraulics	ICAR/01	D	6
Statistical Mechanics	CHIM/02	D	6
Physics of Atmosphere	FIS/06	D	6
Oceanography	GEO/12	D	6
Theoretical Astrophysics	FIS/05	D	6
Numerical Methods in Quantum Mechanics	FIS/03	D	6
Simulation of Multibody Systems	FIS/03	D	6
Genomic Data Analytics	MED/03	D	6
Health Data Analytics	MED/01	D	6
Biomedical Signals and Bioimage analysis	ING-INF/06	D	6
Altri insegnamenti (****) (****) Gli altri insegnamenti possono appartenere a qualsiasi settore		D	

ALLEGATO B: PERCORSI DI STUDIO

Curriculum: Data Science

Specialization in Data Science for Healthcare

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	Ι
Numerical Analysis	MAT/08	В	6	1
Data Management for Big Data	INF/01	В	9	II
Statistical Methods for Data Science	SECS-S/01	С	6	II
Statistical Machine Learning	INF/01	В	6	II

	_	_	_	_	
Course	SSD	TAF	CFU	SEM	
Health Data Analytics	MED/01	С	6	II	
Software Development Methods	ING-INF/05	С	6	1	
Management of Health Data	ING-INF/06	D	6	1	
At least 6 CFU between					
Biomedical Signals and Bioimage Analysis	ING-INF/06	D	6	-	
Information Retrieval	ING-INF/05	С	6	II	
Computer Vision and Pattern Recognition	ING-INF/05	D	6	I	
Optimization Models	MAT/09	С	9	II	
Open Data Management and the Cloud	ING-INF/05	D	6	I	

Specialization in Data Science for Life Sciences

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	_
Numerical Analysis	MAT/08	В	6	1
Data Management for Big Data	INF/01	В	9	II
Statistical Methods for Data Science	SECS-S/01	С	6	II
Statistical Machine Learning	INF/01	В	6	II

Course	SSD	TAF	CFU	SEM
Genomic Data Analytics	MED/03	С	6	II
Big Data Bioinformatics	INF/01	С	6	1
Applied Genomics	BIO/18	D	6	1
At least 6 CFU between				
Algorithms for Massive Data	INF/01	D	6	=
Stochastic Modelling and Simulation	INF/01	С	6	II
Molecular Simulation	ING-IND/24	С	9	I

Specialization in Data Science for Social Sciences

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	I
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	_
Numerical Analysis	MAT/08	В	6	1
Data Management for Big Data	INF/01	В	9	II
Statistical Methods for Data Science	SECS-S/01	С	6	II
Statistical Machine Learning	INF/01	В	6	II

Course	SSD	TAF	CFU	SEM
Network Science	INF/01	С	6	1
Social Network Analysis	SECS-S/05	С	6	II
Information Retrieval	ING-INF/05	С	6	II
At least 6 CFU (12 TAF D) between				
Bayesian Statistics	SECS-S/01	D	6	II
Stochastic Modelling and Simulation	INF/01	С	6	II
Optimisation Models	MAT/09	С	9	II

Specialization in Foundations of Data Science

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6 6	-
Numerical Analysis	MAT/08	В	6	1
Data Management for Big Data	INF/01	В	9	II
Statistical Methods for Data Science	SECS-S/01	С	6	II
Statistical Machine Learning	INF/01	В	6	II

ii real					
Course	SSD	TAF	CFU	SEM	
Software Development Methods	ING-INF/05	С	6	1	
At least 6 CFU between					
Information Retrieval	ING-INF/05	С	6	II	
Network Science	INF/01	С	6	1	
At least 12 CFU (different course than those already selected) between	At least 12 CFU (different course than those already selected) between				
Information Retrieval	ING-INF/05	С	6	II	
Network Science	INF/01	С	6	1	
Computer Vision and Pattern Recognition	ING-INF/05	D	6	1	
Bayesian Statistics	SECS-S/01	С	6	II	
Open Data Management and the Cloud	ING-INF/05	D	6	1	
Algorithms for Massive Data	INF/01	D	6	II	
Optimisation Models	MAT/09	С	9	II	
Stochastic Modelling and Simulation	INF/01	С	6	II	
Cyber-Physical Systems	INF/01	С	6	II	

Specialization in Data Engineering

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	_
Numerical Analysis	MAT/08	В	6	1
Data Management for Big Data	INF/01	В	9	II
Statistical Methods for Data Science	SECS-S/01	С	6	II
Statistical Machine Learning	INF/01	В	6	II

Course	SSD	TAF	CFU	SEM
Software Development Methods	ING-INF/05	С	6	1
Network Science	INF/01	С	6	1
Open Data Management and the Cloud	ING-INF/05	D	6	1
At least 6 CFU between				
Information Retrieval	ING-INF/05	С	6	II
Computer Vision and Pattern Recognition	ING-INF/05	D	6	1
Bayesian Statistics	SECS-S/01	С	6	II

Specialization in Computational Fluid Dynamics

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	_
Numerical Analysis	MAT/08	В	6	1
Stochastic Modelling and Simulation	INF/01	В	6	II
Advanced Numerical Analysis	MAT/08	В	6	II
Optimisation Models	MAT/09	В	9	II

	_	_	_	_	
Course	SSD	TAF	CFU	SEM	
Fluid Dynamics	ICAR/01	С	6	I	
Computational Methods for Turbulent Fluids	ICAR/01	С	6	II	
Advanced Mathematical Methods	MAT/05	С	6	1	
At least 6 CFU between					
Software Development Methods	ING-INF/05	С	6	I	
Biofluidodynamics	ING-IND/34	D	9	1	
Environmental Hydraulics	ICAR/01	D	6	1	
Physics of Atmosphere	FIS/06	D	6	II	
Oceanography	GEO/12	D	6	II	
Computational Fluid Mechanics	ING-IND/10	D	6	II	

Specialization in Computational Physics

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	I+II
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	1
Numerical Analysis	MAT/08	В	6	1
Stochastic Modelling and Simulation	INF/01	В	6	II
Advanced Numerical Analysis	MAT/08	В	6	II
Optimisation Models	MAT/09	В	9	II

ii real				
Course	SSD	TAF	CFU	SEM
Computational Physics Laboratory	FIS/01	С	6	II
At least 6 CFU (TAF C) between				
Molecular Simulation	ING-IND/24	С	9	1
Fluid Dynamics	ICAR/01	С	6	1
At least 12 CFU (TAF D) between				
Numerical Methods in Quantum Mechanics	FIS/03	D	6	II
Simulation of Multibody Systems	FIS/03	D	6	II
Physics of Atmosphere	FIS/06	D	6	II
Computational Quantum Chemistry	CHIM/02	С	6	II
Fluid Dynamics	ICAR/01	С	6	1
Molecular Simulation	ING-IND/24	С	9	1
Statistical Mechanics	CHIM/02	D	6	I
Software Development Methods	ING-INF/05	С	6	1

Specialization in Computational Cosmology

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	I+II
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6	I
Numerical Analysis	MAT/08	В	6	1
Stochastic Modelling and Simulation	INF/01	В	6	II
Advanced Numerical Analysis	MAT/08	В	6	II
Optimisation Models	MAT/09	В	9	II

II Year

Course	SSD	TAF	CFU	SEM	
Astrophysics	FIS/05	С	6	1	
Formation of Cosmological Large-Scale Structures	FIS/05	С	9	1	
Introduction to Cosmology	FIS/05	F	1	1	
Theoretical Astrophysics	FIS/05	D	6	1	
At least 6 CFU (TAF D) between					
Computational Physics Laboratory	FIS/01	С	6	II	
Simulation of Multibody Systems	FIS/03	D	6	II	

This specialization is recommended only to students with a bachelor in Physics.

Specialization in Computational Chemistry

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	1+11
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6 6	_
Numerical Analysis	MAT/08	В	6	Ι
Stochastic Modelling and Simulation	INF/01	В	6	II
Advanced Numerical Analysis	MAT/08	В	6	II
Optimisation Models	MAT/09	В	9	II

Course	SSD	TAF	CFU	SEM
Computational Physics Laboratory	FIS/01	С	6	II
Computational Quantum Chemistry	CHIM/02	С	6	II
Molecular Simulation	ING-IND/24	С	9	I
At least 6 CFU (TAF D) between				
Numerical Methods in Quantum Mechanics	FIS/03	D	6	ш
Simulation of Multibody Systems	FIS/03	D	6	II
Statistical Mechanics	CHIM/02	D	6	1
Software Development Methods	ING-INF/05	С	6	I

Specialization in Control and Design of Cyber-Physical Systems

I Year

Course	SSD	TAF	CFU	SEM
Advanced Programming and Algorithmic Design	ING-INF/05	В	12	I+II
Foundations of High Performance Computing	ING-INF/05	В	9	1
Machine Learning and Data Analytics	ING-INF/05 SECS-S/01	B C	6 6	1
Numerical Analysis	MAT/08	В	6	I
Stochastic Modelling and Simulation	INF/01	В	6	II
Advanced Numerical Analysis	MAT/08	В	6	II
Optimisation Models	MAT/09	В	9	II

Course	SSD	TAF	CFU	SEM	
Systems and Control Theory	ING-INF/04	С	9	1	
Optimal and Robust Control	ING-INF/04	С	9	II	
Cyber-Physical Systems	INF/01	С	6	II	
At least 6 CFU between					
Optimisation and Design	ING-IND/08	С	6	I	
Statistical Machine Learning	INF/01	С	6	II	
Software Development Methods	ING-INF/05	С	6	1	

ALLEGATO C: OBIETTIVI FORMATIVI

ING-INF/05 - Advanced Programming and Algorithmic Design - 12 CFU

Obiettivo: fornire conoscenze avanzate sia teoriche che pratiche di programmazione in C/C++ e Python, con particolare riguardo ai principi della programmazione ad oggetti e a best practices di sviluppo software (uso avanzato di un version control system, continuous integration, unit testing), ed introdurre alla moderna tecnologia di sviluppo di algoritmi, ed in particolare agli algoritmi paralleli.

ING-INF/05 - Foundations of High Performance Computing - 9 CFU

Obiettivo: introdurre lo studente alle moderne architetture per il calcolo ad alte prestazioni. Imparare a testare correttamente tali architetture (potenza di calcolo, bandwidth, latency, efficienza energetica). Sfruttando tali competenze, lo studente sarà introdotto alla programmazione parallela, basata sui protocolli MPI (Message Passing Interface) e multi-threading con OpenMP.

ING-INF/05+SECS-S/01 - Machine Learning and Data Analytics - 6+6 CFU

Obiettivo: introdurre lo studente ai principi dell'analisi di dati, al machine learning (supervised e unsupervised learning) e al data mining.

MAT/08 - Numerical Analysis - 6 CFU

Obiettivo: fornire strumenti di analisi numerica per il calcolo scientifico, con particolare attenzione all'algebra lineare, approssimazione polinomiale, integrazione numerica, soluzione numerica di equazioni differenziali ordinarie e equazioni alle derivate parziali, approssimazione di autovalori ed autovettori.

INF/01 - Stochastic Modelling and Simulation - 6 CFU

Obiettivo: introdurre lo studente ai fondamenti ed alla pratica della modellizzazione stocastica, alla simulazione di modelli stocastici ed all'inferenza di parametri partendo da osservazioni, con particolare attenzione alla scalabilità per grandi modelli.

MAT/08 - Advanced Numerical Analysis - 6 CFU

Obiettivo: introdurre lo studente a metodi allo stato dell'arte per la simulazione numerica di equazioni differenziali alle derivate parziali.

MAT/09 - Optimisation Models - 9 CFU

Obiettivo: fornire allo studente le conoscenze metodologiche, teoriche ed applicative per formulare modelli di programmazione lineare e di ottimizzazione combinatoria e risolverli, anche per problemi ad elevata dimensionalità, utilizzando degli appositi software di ottimizzazione.

INF/01 - Data Management for Big Data - 9 CFU

Obiettivo: introdurre lo studente alla gestione informatica dei dati, in particolare alla caratterizzazione di un sistema informativo, alla modellizzazione dei dati, alla progettazione e gestione di basi di dati, anche non tradizionali (ad esempio, documenti non strutturati, dati spaziali, dati biologici, dati multimediali), alle basi di dati distribuite e alle metodologie e tecniche per la gestione e l'analisi di big data.

SECS-S/01 Statistical Methods for Data Science - 6 CFU

Obiettivo: presentare gli elementi fondamentali della statistica inferenziale ed i principi e alcune tecniche statistiche per l'analisi di dati complessi.

INF/01 - Statistical Machine Learning - 6 CFU

Obiettivo: presentare tecniche avanzate di machine learning, con particolare attenzione a metodi Bayesiani e di deep learning.

ALLEGATO D: EQUIVALENZA DEI CERTIFICATI DI CONOSCENZA DELLA LINGUA INGLESE

LIVELLO MINIMO RICHIESTO = B2

Examinations Board /	Common European	Framework of Reference f	or Languages (CEFR)
Examinations	B2	C1	C2
	FCE First Certificate in English	CAE Certificate in Advanced English	CPE Certificate of Proficiency in English
Cambridge English	BEC Business English Certificate	BEC Business English Certificate	
Language Assessment (Cambridge ESOL	Vantage	Higher	
Examinations)	BULATS Business Language Testing Service	BULATS Business Language Testing Service	BULATS Business Language Testing Service
	Upper Intermediate 60 - 74	Advanced 75 - 89	Upper Advanced 90 - 100
IELTS (International English Language Testing)	5.5 - 6.5	7.0 - 8.0	9.0
City & Guilds (Pitman)	ESOL Communicat	ESOL Expert	ESOL Master
Trinity College London	ISE II ISE II Ca' Foscari	ISE III ISE III Ca' Foscari	ISE IV
	Grades 8 - 10	Grade 11	Grade 12
ETS - TOEFL (Test of English as a	iBT 87 - 109	iBT 110 - 120	
Foreign Language)	PBT 507 - 557	PBT 560 - 617	PBT 620 - 677
Oxford University Press Oxford Test of English B	score 111-140		

ETS - TOEIC (Test of English for International Communication)	Listening 400- 489 Reading 385-454 Speaking 160-199 Writing 150-	Listening 490 Reading 455 Speaking 200 Writing 200	
Pearson Tests of English	PTE General 199 Level 3	PTE General Level 4	PTE General Level 5
	PTE Academic 59 - 75	PTE Academic 76 - 84	PTE Academic 85
LCCI International	JETSE T Level 5	JETSE T Level 6	JETSE T Level 7
	English for Business Level 3	English for Business Level 4	
Qualifications - EDI	ELSA Advanced High 413 - 441	ELSA Superior 442 - 457	ELSA 458 - 500
British Institutes	B2 vantage: First examination	C1 proficiency: English Diploma Operational	C2 mastery: Master in English Language